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Abstract. The properties of dynamical solitons (magnon droplets) in the classical, two-dimensional
anisotropic Heisenberg model with easy-axis exchange anisotropy are studied. The solution of the Landau-
Lifshitz equation in the continuum limit for the soliton with topological charge q = 1 is obtained numerically
using a shooting method. We analized a wide range of the anisotropy parameter and our results are in good
agreement with results obtained from spin dynamics simulations. The dependence of an internal precession
frequency of the soliton on both the anisotropy parameter and the radius of the soliton is also investigated.
Finally, the limits of applicability of the continuum approach are discussed.

PACS. 75.10.Hk Classical spin models – 75.30.Et Exchange and superexchange interactions –
75.70.Kw Domain structure (including magnetic bubbles)

1 Introduction

Linear (spin waves) and nonlinear (domain walls) dy-
namical excitations of magnetically ordered media have
represented the traditional objects of experimental and
theoretical study for many years. Particularly, the non-
linear dynamics of magnets was investigated intensively
during the last three decades in the general context
of “nonlinear science” [1,2]. Several types of dynamical
and topological magnetic solitons were studied theoret-
ically and their existence was confirmed experimentally.
Most of the main theoretical results were obtained in
the long-wave approximation, in the framework of sim-
ple (usually one-dimensional and often integrable) mod-
els which describe the classical Heisenberg magnets with
small single-ion magnetic anisotropy. However, in the
last few years, many new low-dimensional magnetic com-
pounds with unique properties were synthesized producing
a radical change in the problems to be studied [3]. Exam-
ples of such materials include most of the undoped high-
temperature superconductors and their isostructural ana-
logues which have a layered antiferromagnetic structure,
quasi-one-dimensional magnets [(CH3)3NH]NiCl32H2O,
(C9H7NH)NiCl31.5H2O [4], layered intercalated easy-
axis antiferromagnets as (CH2)n(NH3)2MnCl4, and
(CnH2n+1NH3)2MnCl4 [5–8], the metalorganic layered
easy-plane antiferromagnets (NH3)2(CH2)nCuCl4 [9] and
the layered metalorganic ferromagnet (CH3NH3)2CuCl4
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(MACC) [3,10]. In these compounds, it is possible to
change the number n of organic molecules intercalating
the magnetic layers which opens the possibility of exper-
imental investigation of the dependence of the structure
and of dynamic properties of such magnets on the value of
the exchange integral (in comparison with the anisotropy).
Experiments performed on these materials showed the ex-
istence of strong and unusual nonlinear effects such as
chaotic behavior [10] and power adsorption in the gap
of the spin waves spectrum [11]. These results can not
be explained in the framework of the usual theoretical
models due to the essential discreteness of the mentioned
materials. On the other hand, low-dimensional magnets
may, in some cases, exhibit a considerable anisotropy of
the exchange interaction, while most theoretical mod-
els take into account only single-ion or weak exchange
anisotropy. The actual anisotropy of exchange can be of
order of the exchange interaction itself. For example, the
g-factor anisotropy in the compounds KDy(MoO4)2 and
KEr(MoO4)2 is of order of 20 [12]. The study of cases
like the ones cited above requires a recast of most of the
available theoretical results.

For one-dimensional magnetic chains with strong
single-ion and exchange anisotropies some results were
obtained in [13–15]. In the two-dimensional case the
theoretical situation is much more complicated and the
use of numerical simulations is necessary, especially for
the description of 2D dynamical and topological solitons
and vortices in layered magnets with strong magnetic
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anisotropy. Most of the existing results for 2D solitons
and vortices concerned ferromagnets with small single-
ion anisotropy [1,2,8,16–18], although some results [19,20]
were also obtained for ferromagnets with small exchange
anisotropy. In these two cases, the structure and dynamics
of 2D vortices and solitons are very similar. However, for
strong anisotropy, the results for single-ion and exchange
anisotropy must be different and, more importantly, may
differ appreciably from the small anisotropy regime.

In this paper we are interested in the properties of
two-dimensional localized topological solitons (sometimes
named vortices due to their in-plane spin structure) in
the classical ferromagnetic Heisenberg model with easy-
axis exchange anisotropy in a wide region of values for the
anisotropy parameter. The interest devoted to solitons in
easy-axis magnetic systems was considerably smaller than
that to vortices in easy-plane materials because, in the lat-
ter case, the presence of vortex-antivortex pairs, and their
unbinding, is directly related to the Kosterlitz-Thouless
phase transition. Nevertheless, topological excitations in
easy-axis ferromagnets attract theoretical interest due to
their special dynamics: soliton mobility connected with its
finite mass, the existence of internal modes in the soliton,
and the possibility of loss of topological properties in the
strong anisotropy limit. Recently the novel interest to such
objects (often named “skyrmions”) is connected with the
observation of the skyrmions in 2D electron layers under
the quantum Hall effect conditions.

It is important to remark that vortices in easy-axis
magnets were observed experimentally in the experiments
performed by Waldner [7,8,21]. Although the experimen-
tal data obtained by Waldner for the energy of 2D mag-
netic excitations are in excellent agreement with the the-
oretical predictions, some questions were not completely
clarified and remain open until now. First of all the ex-
periments have been pursued with layered antiferromag-
nets while the minimum energy was calculated for the
static ferromagnetic vortex. However, it follows from sim-
ple theoretical models that the minimum of energy in 2D
ferromagnets corresponds to the energy of the dynamical
singular vortex with the frequency of a homogeneous fer-
romagnetic resonance [1,16,18]; this value is very close to
the energy of 2D nontopological dynamical solitons [16].
Moreover, in general, vortices do not exist in the same
model for 2D antiferromagnets [22]. Later it was predicted
theoretically [23,24] that the static ferromagnetic vortex
can exist if the discreteness of the lattice is taken into
account. However, this prediction leads to a static vortex
radius far less than the interatomic distance. These fact
indicate that new analytical and numerical investigations
of the skyrmions-type magnetic vortices are a necessity.
Numerical simulations are particularly important to un-
derstand the effects of discreteness.

We investigate the structure of the soliton with topo-
logical charge q = 1 in the continuum limit and, also, in
the discrete system by using spin dynamics simulations.
The equation of motion in the continuum limit leads to an
ordinary differential equation (ODE) for the radial struc-
ture of the excitation which cannot be analytically solved

but we were able to find its asymptotic analytical solu-
tions, and, then, to gain some insight about the shape of
the structure. These asymptotic solutions are used as a
starting point in the procedure adopted for the numerical
solution of the ODE. The results thus obtained, as well
as the ones obtained from the spin dynamics simulations,
are in good agreement for a wide range of the anisotropy
parameter. The dependences of the internal precession fre-
quency on the magnetic anisotropy and on the soliton ra-
dius (the number of magnons bound in the soliton) are
also given.

2 Model

We start by considering the classical two-dimensional
ferromagnetic Heisenberg model with uni-axial magnetic
anisotropy of two different types

H = −J
∑
n,m

[
SnxS

m
x + Sny S

m
y + (1 +K)Snz S

m
z

]
− dJ

∑
n

(Snz )2 (1)

where the summations run over all nearest-neighbor sites
n and m of the classical spin vectors Sn. Here, J denotes
the exchange integral (J > 0 for ferromagnets), the pa-
rameter K denotes the exchange interaction anisotropy
and d characterizes the single-ion (on site) anisotropy.
We will consider only the so-called Ising-type ferromag-
nets with K > 0 and d > 0 supposing that these two
anisotropies have the same symmetry with respect to the
z-direction.

The classical dynamics of a spin system without damp-
ing can be described by the Landau-Lifshitz equation

~
dSn

dt
= −Sn × ∂H

∂Sn
· (2)

It is convenient to measure the time in units of JS0/~
where S0 is the length of the spins. Then, we can rewrite
equation (2) in terms of the unit vectors sn as

dsn

dt
=
∑
m

(sn × sm)

+K (sn × ez)
∑
m

smz + 2 d (sn × ez) snz · (3)

The dispersion relation of spin waves of the form snx+isny ∼
exp
(
i(kn− ωt)

)
on the discrete lattice is

ω(q) = ω0 + 4 sin2 q

2
(4)

where ω0 = 2(2K + d) is known as the homogeneous fer-
romagnetic resonance frequency.

In the long-wave approximation, valid for small
anisotropy values (K, d� 1), equation (3) becomes

ds
dt

= s×∆s + 2(2K + d) (s× ez) sz, (5)



T. Kamppeter et al.: Topological and dynamical excitations in a classical 2D easy-axis Heisenberg model 95

where we have set the interatomic distance a = 1. Notice
that, as in equation (5), the two types of anisotropy appear
combined as 2(2K+d) = 4K̃. This combination character-
izes the time and space scales of the magnetic excitations:
the frequency ω0 defined before, and the so-called “mag-
netic length”, l0 = 1/

√
4K̃. In the case of weak anisotropy,

the gap in the spin wave spectrum (0 < ω < ω0) is narrow
in comparison to the width of the spectrum band (∼1 in
our units), and the magnetic length is much larger than
the interatomic distance.

However, in the discrete limit (so-called “anti-
integrable limit”) when the magnetic anisotropy is of the
order of the exchange interaction (i.e. the parameters K
and d are of order of unity), the influence of each kind
of anisotropy on the properties of nonlinear excitations
may be different. We achieve this conclusion by consider-
ing the structure of a domain wall on a spin chain. The
width of the wall is characterized by the magnetic length
l0 and decreases as the anisotropy increases. For the one-
dimensional case (1D), it was shown [25] that only when
the existing anisotropy is of the single-ion type the do-
main wall can transform itself into a collinear structure.
In the case of pure exchange anisotropy it conserves its
canted form for any value of the anisotropy parameter K.
This problem is important for us because the solitons in
the 2D lattice that will be studied here have the form of a
cylindrical domain wall in the limit of a large number of
magnons bound in the soliton.

In order to recover the main results obtained for the
1D case, we will summarize here the main steps of the
treatment used in [25]. It is convenient to introduce the
complex variables ψn = snx + isny and rewrite the equation
of motion (3) in the one-dimensional case in the form

i
dψn

dt
= (1 +K) ψn (sn+1

z + sn−1
z )

− snz (ψn+1 + ψn−1) + 2dsnzψ
n. (6)

The collinear form of the domain wall corresponds to the
following spin configuration: snz = −1 for n ≥ 1 and snz = 1
for n ≤ 0. After linearizing equation (6) with respect to
small deviations of ψn from this configuration, we obtain
for the frequency of the solution localized near the domain
wall (“internal mode”) the following relation(√

(ω/2−K − d− 1)2 − 1− (ω/2 +K − d+ 1)
)

×
(√

(ω/2 +K + d+ 1)2 − 1− (−ω/2 +K−d+ 1)
)

= 1.

(7)

The frequency of the domain wall localized mode does
not depend on the anisotropy parameters, K and d, in
an obvious way. The stability of the collinear structure of
the domain wall requires the frequency ω to be real, and
thus the line ω = 0 on the (K, d)-plane corresponds to the
boundary of existence of collinear domain walls. This line
is defined by

dc =
2 +Kc

3 + 2Kc
· (8)

The region d > dc on this plane corresponds to collinear
domain walls. The domain wall has a canted form for
any value of the exchange anisotropy K if the on-site
anisotropy is smaller than 1/2. (The transformation of
collinear domain walls into the canted form in the sim-
plest case of K = 0 was investigated in [13,26,27]).

In the case of a pure exchange anisotropy in a ferro-
magnet, the domain wall has a canted form for all values
of K and an exact solution for it is well known [28]

ψn =
1

cosh(νn+ ν0)
, (9)

where cosh ν = 1 +K in our notations and ν0 is an arbi-
trary constant. The energy of the unit length of the do-
main wall is E0 = 2

√
4K(1 +K)/(1 + 2K).

The dynamical properties of domain walls in ferromag-
nets with single-ion or exchange anisotropy are different,
too: in the case of pure exchange anisotropy (d = 0)
the Peierls relief for the solution (9) equals zero and the
corresponding internal mode of the domain wall is ab-
sent, in contrast to the situation in magnets with on-site
anisotropy only (K = 0).

Because of these results for 1D spin lattices, we ex-
pect similar qualitative differences for the solitons on 2D
lattices with different kinds of anisotropies.

3 Integrals of motion

The pure on-site anisotropy (K = 0) was investigated in
previous papers [1,29,30]. Here, we investigate the more
general Hamiltonian (1) but, later, we will concentrate on
the case of pure exchange interaction anisotropy (d = 0).

We will use below both the spherical coordinates for
the spins

sn = (sin θn cosφn, sin θn sinφn, cos θn), (10)

and the canonically conjugated coordinates, namely the
in-plane angles φn and the out-of-plane components mn =
snz , which gives

sn = (
√

1− (mn)2 cosφn,
√

1− (mn)2 sinφn,mn). (11)

In the Hamiltonian formalism, the equations of motion (6)
in terms of the canonical coordinates have the form

dmn

dt
=

∂H
∂φn

, (12a)

dφn
dt

= − ∂H
∂mn

, (12b)

with the Hamiltonian given by

H = −
∑
n,m

√
1−m2

n

√
1−m2

m cos(φn − φm)

− (1 +K)
∑
n,m

mnmm − d
∑
n

m2
n. (13)
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It follows from the first equation of motion (12a) that

d
dt

∑
n

mn =
∑
n,m

√
1−m2

n

√
1−m2

m sin(φn − φn) = 0

which leads us to an integral of motion defined by

N =
∑
n

(1−mn) (14)

for ferromagnets with all types of uni-axial magnetic
anisotropies. This integral plays an important role in spin
dynamics because it defines the number of magnons or
spin deviations. Using the Lagrangian approach, it is easy
to show (see, for example, [29]) that, for the one-frequency
solutions, the quantity N coincides with the adiabatic in-
variant I of the system (N = I/~) and gives the number of
elementary excitations of the system under semiclassical
quantization.

We will study below the magnetic solitons in easy-axis
ferromagnets, which are stabilized by an additional pre-
cession of the magnetization with the angle φn = ωt. For
such solutions, one can demonstrate that

ω = dH/dN (15)

by varying the integrals of motionH andN . The frequency
ω represents the chemical potential for the magnons in the
system.

The above results also hold for systems with strong
anisotropies where discreteness effects are important.

In the case of a 2D magnetic soliton, a third integral of
motion needs to be considered; it is the topological charge,
or vorticity. The expression for this topological charge in
the continuum approximation is

q =
1

4π

∫
γ dxdy, (16)

where the quantity

γ =
(∂m
∂x

∂φ

∂y
− ∂m

∂y

∂φ

∂x

)
, (17)

represents the so-called “vorticity density” [31,32]. On this
reason the excitation can also be called vortex. For fixed
boundary conditions, m(r → ∞) = 1, the topological
charge is equal to q = ±1,±2, ... and its sign depends on
the direction of the rotation of the azimuthal angle φ along
an arbitrary contour around the soliton center. (Note that,
in easy-axis ferromagnets, the value m(∞)−m(0) = 2 for
the magnetic soliton is twice as large as in the easy-plane
systems, moreover the definition of the topological charge
differs from that in easy-plane magnets [20]).

4 Shape of the soliton

Now, we look for the soliton shape in the continuum limit
which means that we will be restricted to small values for

both the exchange and on-site anisotropies. We consider
a single soliton in the center of a system much larger than
the soliton size which is considered to be of at least some
lattice constants (K, d � 1). Therefore we replace Sn(t)
in (2) by the spin field S(r, t). The Hamiltonian (1) in the
variables (φ, m) can be written as [12]:

H =
JS2

0

2

∫
d2x

[(
1 +K(1−m2)

)
(∇m)2

(1−m2)

+ (1−m2)(∇φ)2 − 4K̃m2

]
(18)

and the equations of motion in terms of φ and m have the
form

∂φ

∂t
=
[
− m

(1−m2)2
(∇m)2 −m(∇m)2 − ∆m

1−m2

]
−4K̃m−K∆m, (19a)

∂m

∂t
= (1−m2) ∆φ− 2 m ∇m∇φ. (19b)

The time is measured in units of JS0/~ as before.
In topological solitons, the magnetization m varies in

the interval [1,−1] and the azimuthal angle φ changes
from 0 to 2πq. Then the characteristic scales of the terms
in equation (19a) are of the order of ∇2 for the terms
inside the brackets and K̃, and K∇2, for the last two
terms. Usually the size of the spatial inhomogeneity of the
magnetization field is of the order of the magnetic length
l0 = 1/2

√
K̃ and since we are working in the contin-

uum approximation we must have l0 � 1(K̃ � 1). In this
case, ∇ ∼ 1/l0 ∼

√
K̃, and the first terms in (19a) are of

the same order (∼ K̃), but the last term is much smaller
(∼ K2). This means that, in a self-consistent approach,
one should take into account the additional dispersion
terms proportional to ∇4 ∼ K2 in (19) — which would
require the inclusion of higher order terms in Hamiltonian
(18). However, this makes sense only for small anisotropies
and our task here is to consider large ones too. Therefore,
we restrict ourselves to the Hamiltonian (18), noting that
the discreteness of the system is taken into account by the
last term on the r.h.s.

The scheme adopted is self-consistent for large ex-
change and large single-ion anisotropy (K ∼ 1, d ∼ 1) if
d < 0 and 2K ' |d| (K̃ � 1). This situation was discussed
in [15] where it was shown that in the limit K̃ � 1, mag-
netic solitons and domain walls transform into an exotic
compact form. Thus, in the 2D case, the soliton repre-
sents a cylindrical domain bounded by a circular domain

wall of a radius R with profile m = sin
(

2
√
K̃/K(r−R)

)
and with magnetization m = ±1 outside the wall and ∓1
inside of it.

A precessing topological soliton does not translate and
its center stays at the center of the circular system. It has
axial symmetry and in polar coordinates (r, χ) it has the
form

m = m(r), φ = ωt+ qχ, (20)
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where q is the topological charge (16) of the soliton, and ω
is the precession frequency of all spins. Inserting (20) into
equation (19a) we obtain an ordinary differential equation
for m(r):

(
1

1−m2
+K

)(
d2m

dr2
+

1
r

dm
dr

)
+

m

(1−m2)2

(
dm
dr

)2

+m

(
4K̃ +

q2

r2

)
+ ω = 0, (21)

which, rewritten in terms of the spherical variable θ(r)
defined in (10), becomes

− (K sin2 θ + 1)
(

d2θ

dr2
+

1
r

dθ
dr

)
−K sin θ cos θ

(
dθ
dr

)2

+ sin θ cos θ
(

4K̃ +
q2

r2

)
+ sin θ ω = 0. (22)

This equation was studied numerically in [16] for the par-
ticular case K = 0, K̃ = 2d (see also [1,29]).

Considering that in the ground state of an easy-axis
ferromagnet all spins point either up (θ = 0) or down
(θ = π), we choose the following boundary conditions

θ(r = 0) = π, (23a)
θ(r =∞) = 0. (23b)

(In the numerical simulations to be discussed in
the next section, we will adopt fixed boundary con-
ditions with all the spins at the border pointing up:
θ(x = ±L, y = ±L) = 0). The same procedure was applied
to a ferromagnet with pure single-ion anisotropy leading
to an equation similar to (22) which, for that case, was
solved numerically in [16]. In the next section, we will also
solve numerically equation (22) but for systems with pure
exchange anisotropy and then discuss the soliton soliton
obtained. However, it is interesting to investigate analyti-
cally the asymptotic behavior of the soliton solution, and,
later, compare it to the numerical results.

After linearizing (22) we obtain for the region around
the center of the soliton (r → 0), the modified Bessel
equation

ρ2 d2α

dρ2
+ ρ

dα
dρ
−
(
ρ2 + q2

)
α = 0, (24)

where α = π − θ is small angle in this region, and

ρ =
√
ω0 − ω r. (25)

A nonsingular soliton solution with topological charge q =
1 for (24) is given by α(ρ) = α0I1(ρ), and for the r → 0
asymptotic behavior of θ we obtain

θ(r) ' π − r

r0
, (26)

where r0 is an arbitrary constant.

The linearization of (22) with respect to the small an-
gle θ, at large distances from the soliton center (r →∞),
also gives us a modified Bessel equation

ζ2 d2θ

dζ2
+ ζ

dθ
dζ
−
(
ζ2 + q2

)
θ = 0 (27)

where

ζ =
√
ω0 + ω r = r/r?. (28)

Thus, the soliton solution with q = 1 has the asymptotic
form θ(r) ' θ0K1(ζ) and decays exponentially as r →∞

θ(r) '
√
r?
r

e−r/r? . (29)

The constants r0 and r? in (26) and (29) depend on the fre-
quency ω and can be determined by matching the asymp-
totic solutions (26) and (29) at intermediate distances.

The shape of a soliton depends essentially on the rela-
tion between the value of anisotropy constant K̃ and the
number of magnons bound in soliton N (or its radius R).
If the radius of a soliton is much larger than the magnetic
length R � l0 = 1/

√
4K̃, i.e. N � 1/K̃, a cylindrical

domain wall is formed and the case corresponds to small
precession frequencies ω � ω0. In this limit we can use the
solution for one-dimensional domain wall in the vicinity of
the cylindrical wall bounding the soliton

θ ' π − 2 arctan exp
(
r −R
l0

)
· (30)

(This corresponds to the simplest form of 1D domain wall
in ferromagnet with K � d. The solution for the case K ∼
d was obtained in [18]). The number of magnons bound in
the soliton is proportional to its volume N ' 2πR2 and
the energy of the soliton is approximately equal to the
energy of the cylindrical domain wall: E ' 2πRE0 =
2πR 2JS2

0/l0 = 8πR
√
K̃. Using relation (25) we obtain

the dependences of the soliton frequency ω (in units of
JS0/~) on its radius R and on the anisotropy constant K̃

ω ' 1
l0R

=

√
4K̃
R

or
ω

ω0
' l0
R
· (31)

The inverse proportionality between ω and R could be ex-
pected since the mass of the soliton must increase with
the soliton radius R; this relationship is confirmed by our
numerical simulation results, as will be discussed in Sec-
tion 5. Our numerical data also confirm the ω ∝

√
K̃

relation.
In the opposite case of a soliton with small radius

R � l0 and high frequency ω ' ω0, the profile of the
θ-field in the center of a soliton has a sharp form. (Note
that for small values of anisotropy the above inequalities
are valid for large radii R � 1). In this limit an approxi-
mate expression for a soliton solution was proposed in [23]
giving

tan
(
θ

2

)
' 2

(q − 1)!

(
R

2l

)q
Kq

(
r

l

)
, (32)
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where q is the topological charge of the soliton and l =
l0/
√

1− ω/ω0. For q = 1, we obtain

ω ' 4K̃
(

1 +
1

ln
(
R2K̃

)), (33)

which is the relation obtained in [23] and which plays the
same role as (31) in this limit.

5 Spin dynamics simulations

The analytical and numerical analysis we have done so
far is restricted to the continuum approximation and ax-
ial symmetrical form of a soliton. In the discrete limit of a
ferromagnet with strong anisotropy, the width of a domain
wall boundering the soliton is of order of the interatomic
parameter and the wall has nearly collinear structure. In
this limit, the long wave approximation and the investiga-
tion of soliton dynamics in the framework of differential
equations for the magnetization are not valid. Moreover,
in the the discrete limit the shape of the domain wall de-
pends on its orientation with respect to the orientation of
the lattice and the soliton – strictly speaking – does not
have radial symmetry. This symmetrical geometry is bro-
ken even in long wave approximation if the system holding
the vortex is not circular (as in our simulations where we
chose a square system) and is not large enough in com-
parison to the soliton size. In all the cases above, we can
not use equation (22) for the analytical and numerical in-
vestigations of a soliton.

In order to investigate discreteness effects on the soli-
ton to be formed in easy-axis systems with pure exchange
anisotropy, we will use spin dynamic simulations to study
the model described by (1) with d = 0. In these simu-
lations we will not be restricted neither to the discrete-
ness of the solution nor to its radial symmetrical form
or to boundary conditions. However, the following prob-
lems will appear in such approach. As we do not know
the real solution, we will have to insert an approximate
expression describing the vortex at the initial step of the
simulation. The approximate form we will use has axial
symmetry, radius R and width l′0 for the boundaring wall.
Obviously, the soliton obtained as a result of the simula-
tion has slightly different size R, width l0 and shape in the
plane. The soliton solution represents the structure with
the minimal energy for a given number N of spin devia-
tions. Then, for any initial condition used in the simula-
tion, the energy of the system E is larger than the energy
of the soliton with given initial moment number N . The
initial energy partly transforms into the eigenmodes of the
system’s continuum spectrum and into the possible inter-
nal modes of the soliton itself. To avoid this problem we
have applied a damping at the initial stage of simulation.
The value of this damping and the time of its acting was
fixed in all simulations. However, as the damping of spin
waves depends on their frequencies and as the number of
excited magnons was different in different cases, we could
not damp all these modes exactly in all simulations per-
formed. As we will discuss in the following, some of the

simulations still show spin waves at the final step of the
procedure.

Another problem is connected to the definition of the
final size R of the soliton when the domain wall form
slightly differs from the radial symmetrical one and when
its shape is different in different azimuthal directions.
However, the initial radius R inserted in the simulation
does not vary significantly along the procedure and, then,
we decided to keep this value as characterizing the soliton
size.

We start our simulations by inserting a structure very
similar to a soliton at the center of a square lattice of
100× 100 spins (L = 50). The quasi-2D compounds with
Cu magnetic ions have such a square lattice (see Tab. 7
in Ref. [3]). The out-of-plane component of this structure
is defined by

sz =

 1: r < R − l′0 ,
sin(−π(r −R)/l0): R− l′0 < r < R + l′0 ,

−1: R+ l′0 <r ,
(34)

where R is the soliton radius and the initial shape of soli-
ton is characterised by two parameters: magnetic length
l0 = 1/

√
4K and the cutoff size l′0 which is taken the same

for all simulations: l′0 = 4. The parameter l′0 only needs to
be larger than one lattice constant so that the initial soli-
ton has a well pronounced vortex in-plane structure. This
structure is defined by the function φ = tan−1(y/x). The
fixed boundary conditions imposing sz = 1 at the border
of the lattice are supposed.

We used the discrete equations of motion (6) for unit
vectors sn in our numerical simulation. In contrast to the
analytical calculation described in Sections 3 and 4, we
worked here with the Cartesian components sα. The time
integration is done by the same fourth-order Runge-Kutta
code as in [33] and [34]. In order to assure precise values
for ω, a time integration over 2000 time units is done with
an integration step size of 0.01 time units. This choice is
good for intermediate K and R values. For example, for
K = 0.1 with the period of the ferromagnet resonance
being T0 = 2π/ω0 ' 15.8 for the soliton radius R = 20,
it follows from (31) that the period of soliton precession
is T ' 200 and the simulation time contains about 10
oscillations of magnetization in the soliton. However, for
smaller values of anisotropy and larger radii, the accuracy
on the calculation of the frequency decreases: for K = 0.01
and R = 30, 40 the total integration time contains only 2
and 1.5 soliton oscillations.

During the first few time steps of integration, the struc-
ture adjusts itself to the real conditions of the system by
radiating spin waves. The magnons with wave lengths of
order of λ ∼ 1/R and the internal modes localized near
circular domain wall are mainly excited. In order to test
the soliton stability and, mostly, to damp out the spin
waves generated from non ideal initial conditions we have
applied a Gilbert damping [35,36] to the first 100 time
units of integration (t < t0 = 100). This damping is in-
cluded in the simulations through the addition of the term
ε (sn × dsn/dt) to equation (2) implying that the damp-
ing time rate for the spin waves is τ ∼ 1/εω. As said
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before, we took the same value for ε: ε = 0.02 in all sim-
ulations performed. Then, for spin waves with frequency
ω0, the damping time is τ = 25/

√
K and we conclude that

for K < 0.06 the damping time τ will be larger than t0
and the spin waves will not damp out completely. Despite
these drawbacks, we chose to use small values for ε and
t0 in order to avoid the damping of the soliton itself and
uncontrolled changing of its size.

We observed that, during the integration process, the
soliton radius does not change substantially from the value
initially chosen and the final domain wall width l0 is
reached after few time steps suggesting that our initial
structure was not too far from the shape of the soliton
solution for these systems. This feature contributes to our
study of the dependences of the soliton shape on its radius
and on its precession frequency.

To find the area of applicability of the analytical ap-
proach, of the shooting method, and the boundaries of
validity of equation (33), the simulations were done in
wide intervals of anisotropy values and soliton radii. The
anisotropy constant K was varied in the 0.001 to 40 range
and the soliton size R in the interval 1 ≤ R ≤ 40.
For all these values of (K,R), we obtained the shape of
sz-magnetization component in the soliton (i.e., the pro-
file of magnon density in this magnon droplet) at the final
stage of simulation (t = 2000), the in-plane magnetization
distribution (sx, sy) and the density of states of magnetic
excitations, particularly the soliton frequencies.

In order to discuss the results, we divide the area of
parameters (K,R) into some domains depending on the
main features for the soliton structure and dynamics.

(i) When the radius of soliton approaches to the size
of the system (R = 40 ∼ L = 50) the influence of
the fixed boundaries can be important. Nevertheless, in
a broad anisotropy interval, we soliton observed has cir-
cular form in most cases. The boundaring domain wall lost
its cylindrical symmetry only in the limits of very small
(K = 0.003) and large (K ≥ 0.5) values of anisotropy.

(ii) For strong anisotropy (K ≥ 0.5), the domain wall
transforms into a practically collinear structure. (As we
noted in Section 2, the domain wall in a 1D ferromag-
net with pure exchange anisotropy never becomes exactly
collinear). In this limit, we must use cosh(1/l∗0) = 1 + 2K
instead of l0 = 1/

√
4K for the width of the wall. However,

in reality, this width becomes of the order of the inter-
atomic distance for K ∼ 1. This means that discrete ef-
fects are important in this region. For example, the width
and energy of the domain wall must depend on its orien-
tation in the lattice and the shape of the wall must devi-
ate from cylindrical one. This effect was predicted in [28].
However, although we have indeed observed non cylindri-
cal solitons for K = 1 and K = 10, it is important to
remark that, in contrast to the predictions in [28], the
domain walls tend to orientate along the diagonal of the
lattice cell. Nevertheless, as the deviations of the form in
most cases were small we can still consider the soliton as
having radial symmetry and use the discrete domain wall
energy obtained in Section 2 to analyse the dependence of

the soliton frequency on its size and anisotropy

ω =
√

4K
R

√
1 +K

1 + 2K
· (35)

This equation corresponds to equation (31) in the discrete
limit.

For K > 40, the soliton is a stable, static structure
resembling a collinear domain wall. Due to this practi-
cally collinear structure of soliton there is neither visible
in-plane vortex structure nor any spin precession defined.
Even for not so large anisotropy values, K > 0.5, the
width of the domain wall is not large enough to provide a
reasonable number of spins with non-zero in-plane compo-
nents so that the precession frequencies can be measured
with sufficient accuracy. But in the intermediate area with
K = 0.5 we see deviations from equation (31) in the de-
pendence ω = ω(K) (see Fig. 2) and this decreasing of
frequency is in agreement with (35).

(iii) In the opposite case of small anisotropy, we can
consider the vortex as a magnon droplet limited by a do-
main wall only if the soliton radius is larger then the width
l0 of this wall. In the R < l0 or K < 1/4R2 domain, the
topological structure of the vortex center plays an impor-
tant role and we must use (32) instead of (30) for the soli-
ton profile, and (33) instead of (31) for its frequency. In
our simulations in this domain of parameters, the initial
vortex structure collapses and solitons break down into
spin waves. Note that in this interval of parameters, the
initial condition (34) does not correspond to the real mag-
netization distribution and then the system is highly ex-
cited initially. It is probably this circumstance that leads
to the solitons collapse. Solitons were observed only for
4KR2 ∼ 10. The simulations show that for K = 0.01 the
structure collapses for R = 10 (4KR2 = 4) and survives
only if R ≥ 20 (4KR2 ≥ 16). However, it is interesting to
note that extremely small vortices with R = 1 were stable
and observed for all values of K from 0.003 to 0.5.

(iv) The domain of parameters 1 < l0 < R is the most
interesting because it corresponds to the region where the
vortex represents the topological magnon droplet and it
becomes possible to compare its structure and dynam-
ics with those obtained from the analytical approach and
from the shooting method. However, as the interval of K
values where solitons were observed decreases as their size
R decreases, we display in the following figures only the
results for 10 ≤ R ≤ 40 and 0.01 ≤ K ≤ 0.5.

We investigated the dependences of the precession fre-
quency ω, the domain wall width l0 and the number of
magnons in the soliton on the anisotropy parameterK and
on the soliton radius R. The frequencies were measured
from the Fourier spectra of a time evolution of the Sx and
Sy spin components from one row of spins. Figure 1 is a
logarithmic plot showing the dependence of ω on R for five
K values. The curves for K > 0.01 look like parallel lines
in agreement with the ω ∼ 1/R dependence predicted
in (31) and plotted for comparison as a thick line. The
curve for K = 0.01 is not perfectly parallel to the others
and we believe that the cause of this deviation is the lack
of precision in the measurement of very low frequencies.
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Fig. 1. Precession frequency ω vs. soliton radius R.
( ) K = 0.5; (· · · · · · ) K = 0.3; (− − −) K = 0.1;
(− · − · −) K = 0.03; (− · · ·−) K = 0.01; ( )
ω ∼ 1/R.
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Fig. 2. Precession frequency ω vs. anisotropy constant K.
( ) R = 10; (· · · · · · ) R = 20; (− − −) R = 30;

(− · − · −) R = 40; ( ) ω ∼
√
K.

For example, ω ' 0.006 in the case K = 0.01, R = 40
and this corresponds to only two rotations of spins dur-
ing the time of simulation. The dependence of ω (loga-
rithmic scale) on the anisotropy parameter K for several
values of the soliton radius is shown in Figure 2. For a
large range of K, the curves agree rather well with the
relation ω ∼

√
K from (31), plotted as a thick line for

comparison. In this figure, we note that all frequencies
obtained for K = 0.5 are smaller than what they should
be if the suggested relation (31) between ω and K were
valid. However, as we have discussed above, in this region
of K the width of the domain wall becomes smaller than
a lattice spacing. Then equation (31) transforms into (35)
and the frequency must decrease. The deviations in fre-
quency dependence on anisotropy were observed for small
K (K = 0.01) and large radii R as well. But in this limit
we could not evaluate the frequency precisely enough: for
R = 20, 30, 40 the simulation time t = 2000 contained
only 6, 4 and 3 periods of spins rotations.

Combining the results obtained in Figures 1 and 2,
we conclude that ω is inversely proportional to R and
proportional to

√
K. So the dependence ω ∼

√
K/R ∼

0.1 1.0
K

1

10

l 0

Fig. 3. Domain wall width l0 vs. anisotropy constant K.
R = 15. ( ) Counting method; (· · · · · · ) Fitting

method; ( ) l0 = 1/
√
K.

1/Rl0 similar to the analytical result (31) is valid in all this
interval of parameters including the areas of large radii (of
the order of the system size) and large anisotropy with the
domain wall width being of the order of the interatomic
distance.

The domain wall widths l0 were determined by two
methods. First, we fitted θ(r) to a function very similar
to equation (30)

θf(r) = π − 2 arctan exp
(
r −Rf

lf

)
(36)

where Rf and Lf are the fitting parameters. We found that
(36) is very close to the real soliton shape. We also deter-
mined l0 by simply counting those spins which are not
completely aligned along the z-axis (i.e., we considered
all spins with −0.9 < Sz < 0.9 and divided the obtained
number by 2πR). These two estimates for l0 are plotted as
a function of K in Figure 3: both results give curves very
close to straight lines although there is a non-negligible de-
viation for large anisotropies (K ≥ 0.5), when the width
is governed by the discreteness of the system and is differ-
ent in different points along the domain wall. We conclude
then that the dependence of the domain wall width on K
is l0 ∼ 1/

√
K, as predicted by our analytical approach

and by the numerical solution of (22).
At last, we measured the magnon number N of the

simulated solitons applying formulae (14) to the obtained
in simulation spin fields. The result is shown in Figure 4
where we can see that the relation N = 2πR2 is very well
fulfilled although there are slight deviations for small K
and small R. These deviations are caused by the large
wall width l0. It is easy to show that for the symmetric
domain wall profile in a fitting function like (36), the total
number of magnons in a soliton is N = 2πR2−O(Rl) (or
lnN ∼ 2 lnR − O(1/R

√
K)) and small deviations from

the parabolic law increase with the decreasing of R
√
K.

Finally, we compare the shape of the soliton obtained
from the numerical solution of (22) to the soliton shape
obtained from the spin dynamic simulation. Therefore, we
insert the frequencies ω measured from the simulations
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Fig. 4. Magnon number N vs. soliton radius R.
( ) K = 0.5; (· · · · · · ) K = 0.3; (− − −) K = 0.1;
(− · − · −) K = 0.03; (− · · ·−) K = 0.01; ( )
N = 2πR2.

into the differential equation (22) and implement the nu-
merical solution of this equation as explained before. The
two results for K = 0.1,R = 20, and ω = 0.0314 are shown
in Figure 5 where it can be seen that the agreement is very
good: both the shape of the wall and its width are in excel-
lent agreement in the two calculations. The domain wall
radius R0 does not change appreciably for 0 < K < 0.1.
For K = 0.5 the radius determined by the numerical so-
lution is larger (by up to four lattice units) than the one
obtained by the simulations. However, we have already
seen that for anisotropies of this magnitude (and higher)
the discreteness of the system becomes important and we
cannot expect a good agreement between the two different
calculations. We also obtain a discrepancy in the compar-
ison of the two soliton shapes for very small anisotropy,
K = 0.01, where the continuous approach must be valid.
The problem here seems to be the precision in the mea-
surement of small frequencies, as mentioned before.

6 Conclusion

In the article we provide a complex analysis of the struc-
ture and dynamics of topological solitons in ferromagnets
with exchange easy-axis anisotropy both numerically and
analytically. The numerical simulations have been done
in wide intervals for the anisotropy parameter K and for
the soliton size R. The dependencies of the soliton shape,
the frequency ω of spin rotations in the soliton, the width
l0 of the domain wall bordering it, and the number N of
magnons bound in the soliton on the parameters K and
R were found. We obtained the following main results:

(i) In wide intervals of exchange anisotropy and of the
soliton size, the topological soliton represents the magnon
droplet bounded by a domain wall and is practically
similar to solitons in ferromagnets with pure single-ion
anisotropy.

(ii) In this domain of the parameters, all structural and
dynamical characteristics of the soliton obtained from nu-
merical simulations (with good accuracy) coincide with
the results of our analytical approach and with the data

0 10 20 30 40 50
r

0

1

2

3

θ

Fig. 5. Numerical solution of (22) for R0 = 20, K = 0.1, and
ω = 0.0314 (dashed line), compared to the shape of the soliton
obtained in the spin dynamics simulations (dotted line).

of numerical calculation performed with the shooting
method.

(iii) The numerical simulations show that in the inter-
mediate areas with l0 ∼ a and l0 ∼ R, the analytical pre-
dictions for ω = ω(K,R), l0 = l0(K) and N = N(K,R)
can be considered to hold qualitatively.

(iv) In the limit of strong anisotropy (K > 0.5), the
soliton transforms into a nearly collinear localized struc-
ture with non evident topological properties. In this limit,
solitons with large radii can loose their radial symmetry
due to the discreteness of the lattice and influences from
the boundaries.

(v) In the opposite case l0 > R, the magnon droplet
transforms into a soliton with evident topological struc-
ture. But our numerical simulations demonstrate that, in
this limit, solitons become less stable and brake down into
spin waves from excited initial states.

We must stress that the last results (iii, iv, v) were
obtained by numerical simulations performed in domains
of parameters where another methods of investigation of
solitons are non applicable.

In the Introduction, we stressed that according to a
simple theoretical approach, magnetic vortices exist rather
in 2D ferromagnets than in 2D antiferromagnets. Conse-
quently, all calculations in this paper were realized for
easy-axis ferromagnets. It will be interesting to provide
experiments similar to those performed in [7] but for quasi-
2D ferromagnets. There exists a large variety of such com-
pounds (see Tab. 7 from [3]) with a wide interval of mag-
netic anisotropy values (K ∼ 10−2 ÷ 10−5). However, as
the magnetic vortex is the dynamical object, it is impor-
tant to investigate experimentally the density of states
in the frequency gap ω < ω0. In Section 6 (see (iii)),
we showed that, according to our simulations, the mini-
mum size of observed vortices with minimum energies was
R ∼ l0. The corresponding ratio ω/ω0 varied in the inter-
val (0.2−0.5) in the depth of the gap. So we may hope
that such frequencies may be detected experimentally.

The authors gratefully acknowledge the support of CAPES-
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